home *** CD-ROM | disk | FTP | other *** search
- /* specfunc/legendre_Qn.c
- *
- * Copyright (C) 1996, 1997, 1998, 1999, 2000 Gerard Jungman
- *
- * This program is free software; you can redistribute it and/or modify
- * it under the terms of the GNU General Public License as published by
- * the Free Software Foundation; either version 2 of the License, or (at
- * your option) any later version.
- *
- * This program is distributed in the hope that it will be useful, but
- * WITHOUT ANY WARRANTY; without even the implied warranty of
- * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
- * General Public License for more details.
- *
- * You should have received a copy of the GNU General Public License
- * along with this program; if not, write to the Free Software
- * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
- */
-
- /* Author: G. Jungman */
-
- #include <config.h>
- #include <gsl/gsl_math.h>
- #include <gsl/gsl_errno.h>
- #include <gsl/gsl_sf_bessel.h>
- #include <gsl/gsl_sf_elementary.h>
- #include <gsl/gsl_sf_exp.h>
- #include <gsl/gsl_sf_pow_int.h>
- #include <gsl/gsl_sf_legendre.h>
-
- #include "error.h"
-
- /* Evaluate f_{ell+1}/f_ell
- * f_ell := Q^{b}_{a+ell}(x)
- * x > 1
- */
- static
- int
- legendreQ_CF1_xgt1(int ell, double a, double b, double x, double * result)
- {
- const double RECUR_BIG = GSL_SQRT_DBL_MAX;
- const int maxiter = 5000;
- int n = 1;
- double Anm2 = 1.0;
- double Bnm2 = 0.0;
- double Anm1 = 0.0;
- double Bnm1 = 1.0;
- double a1 = ell + 1.0 + a + b;
- double b1 = (2.0*(ell+1.0+a) + 1.0) * x;
- double An = b1*Anm1 + a1*Anm2;
- double Bn = b1*Bnm1 + a1*Bnm2;
- double an, bn;
- double fn = An/Bn;
-
- while(n < maxiter) {
- double old_fn;
- double del;
- double lna;
- n++;
- Anm2 = Anm1;
- Bnm2 = Bnm1;
- Anm1 = An;
- Bnm1 = Bn;
- lna = ell + n + a;
- an = b*b - lna*lna;
- bn = (2.0*lna + 1.0) * x;
- An = bn*Anm1 + an*Anm2;
- Bn = bn*Bnm1 + an*Bnm2;
-
- if(fabs(An) > RECUR_BIG || fabs(Bn) > RECUR_BIG) {
- An /= RECUR_BIG;
- Bn /= RECUR_BIG;
- Anm1 /= RECUR_BIG;
- Bnm1 /= RECUR_BIG;
- Anm2 /= RECUR_BIG;
- Bnm2 /= RECUR_BIG;
- }
-
- old_fn = fn;
- fn = An/Bn;
- del = old_fn/fn;
-
- if(fabs(del - 1.0) < 4.0*GSL_DBL_EPSILON) break;
- }
-
- *result = fn;
-
- if(n == maxiter)
- GSL_ERROR ("error", GSL_EMAXITER);
- else
- return GSL_SUCCESS;
- }
-
-
- /* Uniform asymptotic for Q_l(x).
- * Assumes x > -1.0 and x != 1.0.
- * Discards second order and higher terms.
- */
- static
- int
- legendre_Ql_asymp_unif(const double ell, const double x, gsl_sf_result * result)
- {
- if(x < 1.0) {
- double u = ell + 0.5;
- double th = acos(x);
- gsl_sf_result Y0, Y1;
- int stat_Y0, stat_Y1;
- int stat_m;
- double pre;
- double B00;
- double sum;
-
- /* B00 = 1/8 (1 - th cot(th) / th^2
- * pre = sqrt(th/sin(th))
- */
- if(th < GSL_ROOT4_DBL_EPSILON) {
- B00 = (1.0 + th*th/15.0)/24.0;
- pre = 1.0 + th*th/12.0;
- }
- else {
- double sin_th = sqrt(1.0 - x*x);
- double cot_th = x / sin_th;
- B00 = 1.0/8.0 * (1.0 - th * cot_th) / (th*th);
- pre = sqrt(th/sin_th);
- }
-
- stat_Y0 = gsl_sf_bessel_Y0_e(u*th, &Y0);
- stat_Y1 = gsl_sf_bessel_Y1_e(u*th, &Y1);
-
- sum = -0.5*M_PI * (Y0.val + th/u * Y1.val * B00);
-
- stat_m = gsl_sf_multiply_e(pre, sum, result);
- result->err += 0.5*M_PI * fabs(pre) * (Y0.err + fabs(th/u*B00)*Y1.err);
- result->err += GSL_DBL_EPSILON * fabs(result->val);
-
- return GSL_ERROR_SELECT_3(stat_m, stat_Y0, stat_Y1);
- }
- else {
- double u = ell + 0.5;
- double xi = acosh(x);
- gsl_sf_result K0_scaled, K1_scaled;
- int stat_K0, stat_K1;
- int stat_e;
- double pre;
- double B00;
- double sum;
-
- /* B00 = -1/8 (1 - xi coth(xi) / xi^2
- * pre = sqrt(xi/sinh(xi))
- */
- if(xi < GSL_ROOT4_DBL_EPSILON) {
- B00 = (1.0-xi*xi/15.0)/24.0;
- pre = 1.0 - xi*xi/12.0;
- }
- else {
- double sinh_xi = sqrt(x*x - 1.0);
- double coth_xi = x / sinh_xi;
- B00 = -1.0/8.0 * (1.0 - xi * coth_xi) / (xi*xi);
- pre = sqrt(xi/sinh_xi);
- }
-
- stat_K0 = gsl_sf_bessel_K0_scaled_e(u*xi, &K0_scaled);
- stat_K1 = gsl_sf_bessel_K1_scaled_e(u*xi, &K1_scaled);
-
- sum = K0_scaled.val - xi/u * K1_scaled.val * B00;
-
- stat_e = gsl_sf_exp_mult_e(-u*xi, pre * sum, result);
- result->err = GSL_DBL_EPSILON * fabs(result->val) * fabs(u*xi);
- result->err += 2.0 * GSL_DBL_EPSILON * fabs(result->val);
-
- return GSL_ERROR_SELECT_3(stat_e, stat_K0, stat_K1);
- }
- }
-
-
-
- /*-*-*-*-*-*-*-*-*-*-*-* Functions with Error Codes *-*-*-*-*-*-*-*-*-*-*-*/
-
- int
- gsl_sf_legendre_Q0_e(const double x, gsl_sf_result * result)
- {
- /* CHECK_POINTER(result) */
-
- if(x <= -1.0 || x == 1.0) {
- DOMAIN_ERROR(result);
- }
- else if(x*x < GSL_ROOT6_DBL_EPSILON) { /* |x| <~ 0.05 */
- const double c3 = 1.0/3.0;
- const double c5 = 1.0/5.0;
- const double c7 = 1.0/7.0;
- const double c9 = 1.0/9.0;
- const double c11 = 1.0/11.0;
- const double y = x * x;
- const double series = 1.0 + y*(c3 + y*(c5 + y*(c7 + y*(c9 + y*c11))));
- result->val = x * series;
- result->err = 2.0 * GSL_DBL_EPSILON * fabs(x);
- return GSL_SUCCESS;
- }
- else if(x < 1.0) {
- result->val = 0.5 * log((1.0+x)/(1.0-x));
- result->err = 2.0 * GSL_DBL_EPSILON * fabs(result->val);
- return GSL_SUCCESS;
- }
- else if(x < 10.0) {
- result->val = 0.5 * log((x+1.0)/(x-1.0));
- result->err = 2.0 * GSL_DBL_EPSILON * fabs(result->val);
- return GSL_SUCCESS;
- }
- else if(x*GSL_DBL_MIN < 2.0) {
- const double y = 1.0/(x*x);
- const double c1 = 1.0/3.0;
- const double c2 = 1.0/5.0;
- const double c3 = 1.0/7.0;
- const double c4 = 1.0/9.0;
- const double c5 = 1.0/11.0;
- const double c6 = 1.0/13.0;
- const double c7 = 1.0/15.0;
- result->val = (1.0/x) * (1.0 + y*(c1 + y*(c2 + y*(c3 + y*(c4 + y*(c5 + y*(c6 + y*c7)))))));
- result->err = 2.0 * GSL_DBL_EPSILON * fabs(result->val);
- return GSL_SUCCESS;
- }
- else {
- UNDERFLOW_ERROR(result);
- }
- }
-
-
- int
- gsl_sf_legendre_Q1_e(const double x, gsl_sf_result * result)
- {
- /* CHECK_POINTER(result) */
-
- if(x <= -1.0 || x == 1.0) {
- DOMAIN_ERROR(result);
- }
- else if(x*x < GSL_ROOT6_DBL_EPSILON) { /* |x| <~ 0.05 */
- const double c3 = 1.0/3.0;
- const double c5 = 1.0/5.0;
- const double c7 = 1.0/7.0;
- const double c9 = 1.0/9.0;
- const double c11 = 1.0/11.0;
- const double y = x * x;
- const double series = 1.0 + y*(c3 + y*(c5 + y*(c7 + y*(c9 + y*c11))));
- result->val = x * x * series - 1.0;
- result->err = 2.0 * GSL_DBL_EPSILON * fabs(result->val);
- return GSL_SUCCESS;
- }
- else if(x < 1.0){
- result->val = 0.5 * x * (log((1.0+x)/(1.0-x))) - 1.0;
- result->err = 2.0 * GSL_DBL_EPSILON * fabs(result->val);
- return GSL_SUCCESS;
- }
- else if(x < 6.0) {
- result->val = 0.5 * x * log((x+1.0)/(x-1.0)) - 1.0;
- result->err = 2.0 * GSL_DBL_EPSILON * fabs(result->val);
- return GSL_SUCCESS;
- }
- else if(x*GSL_SQRT_DBL_MIN < 0.99/M_SQRT3) {
- const double y = 1/(x*x);
- const double c1 = 3.0/5.0;
- const double c2 = 3.0/7.0;
- const double c3 = 3.0/9.0;
- const double c4 = 3.0/11.0;
- const double c5 = 3.0/13.0;
- const double c6 = 3.0/15.0;
- const double c7 = 3.0/17.0;
- const double c8 = 3.0/19.0;
- const double sum = 1.0 + y*(c1 + y*(c2 + y*(c3 + y*(c4 + y*(c5 + y*(c6 + y*(c7 + y*c8)))))));
- result->val = sum / (3.0*x*x);
- result->err = 2.0 * GSL_DBL_EPSILON * fabs(result->val);
- return GSL_SUCCESS;
- }
- else {
- UNDERFLOW_ERROR(result);
- }
- }
-
-
- int
- gsl_sf_legendre_Ql_e(const int l, const double x, gsl_sf_result * result)
- {
- /* CHECK_POINTER(result) */
-
- if(x <= -1.0 || x == 1.0 || l < 0) {
- DOMAIN_ERROR(result);
- }
- else if(l == 0) {
- return gsl_sf_legendre_Q0_e(x, result);
- }
- else if(l == 1) {
- return gsl_sf_legendre_Q1_e(x, result);
- }
- else if(l > 100000) {
- return legendre_Ql_asymp_unif(l, x, result);
- }
- else if(x < 1.0){
- /* Forward recurrence.
- */
- gsl_sf_result Q0, Q1;
- int stat_Q0 = gsl_sf_legendre_Q0_e(x, &Q0);
- int stat_Q1 = gsl_sf_legendre_Q1_e(x, &Q1);
- double Qellm1 = Q0.val;
- double Qell = Q1.val;
- double Qellp1;
- int ell;
- for(ell=1; ell<l; ell++) {
- Qellp1 = (x*(2.0*ell + 1.0) * Qell - ell * Qellm1) / (ell + 1.0);
- Qellm1 = Qell;
- Qell = Qellp1;
- }
- result->val = Qell;
- result->err = GSL_DBL_EPSILON * l * fabs(result->val);
- return GSL_ERROR_SELECT_2(stat_Q0, stat_Q1);
- }
- else {
- /* x > 1.0 */
-
- double rat;
- int stat_CF1 = legendreQ_CF1_xgt1(l, 0.0, 0.0, x, &rat);
- int stat_Q;
- double Qellp1 = rat * GSL_SQRT_DBL_MIN;
- double Qell = GSL_SQRT_DBL_MIN;
- double Qellm1;
- int ell;
- for(ell=l; ell>0; ell--) {
- Qellm1 = (x * (2.0*ell + 1.0) * Qell - (ell+1.0) * Qellp1) / ell;
- Qellp1 = Qell;
- Qell = Qellm1;
- }
-
- if(fabs(Qell) > fabs(Qellp1)) {
- gsl_sf_result Q0;
- stat_Q = gsl_sf_legendre_Q0_e(x, &Q0);
- result->val = GSL_SQRT_DBL_MIN * Q0.val / Qell;
- result->err = l * GSL_DBL_EPSILON * fabs(result->val);
- }
- else {
- gsl_sf_result Q1;
- stat_Q = gsl_sf_legendre_Q1_e(x, &Q1);
- result->val = GSL_SQRT_DBL_MIN * Q1.val / Qellp1;
- result->err = l * GSL_DBL_EPSILON * fabs(result->val);
- }
-
- return GSL_ERROR_SELECT_2(stat_Q, stat_CF1);
- }
- }
-
-
- /*-*-*-*-*-*-*-*-*-* Functions w/ Natural Prototypes *-*-*-*-*-*-*-*-*-*-*/
-
- #include "eval.h"
-
- double gsl_sf_legendre_Q0(const double x)
- {
- EVAL_RESULT(gsl_sf_legendre_Q0_e(x, &result));
- }
-
- double gsl_sf_legendre_Q1(const double x)
- {
- EVAL_RESULT(gsl_sf_legendre_Q1_e(x, &result));
- }
-
- double gsl_sf_legendre_Ql(const int l, const double x)
- {
- EVAL_RESULT(gsl_sf_legendre_Ql_e(l, x, &result));
- }
-